A greedy-algorithm characterization of valuated Δ-matroids

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Exchange Axioms for Valuated Matroids and Valuated Delta-Matroids

Two further equivalent axioms are given for valuations of a matroid. Let M = (V,B) be a matroid on a finite set V with the family of bases B. For ω : B → R the following three conditions are equivalent: (V1) ∀B,B′ ∈ B, ∀u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V2) ∀B,B′ ∈ B with B 6= B′, ∃u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V3) ∀B,B′ ∈ B, ∀...

متن کامل

Two Algorithms for Valuated ∆-matroids

Two algorithms are proposed for computing the maximum degree of a principal minor of specified order of a skew-symmetric rational function matrix. The algorithms are developed in the framework of valuated ∆matroid of Dress and Wenzel, and are valid also for valuated ∆-matroids in general.

متن کامل

The Greedy Algorithm and Coxeter Matroids

The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each pair (W, P) consisting of a finite irreducible Coxeter group W and parabolic subgroup P is associated a collection of objects called Coxeter matroids. The (ordinary) matroids are a special case, the case W = An (isomorphic to the symmetric group Symn+1) and P a maximal parabolic subgroup. The main re...

متن کامل

The greedy algorithm for strict cg-matroids

A matroid-like structure defined on a convex geometry, called a cg-matroid, is defined by S. Fujishige, G. A. Koshevoy, and Y. Sano in [6]. Strict cg-matroids are the special subclass of cg-matroids. In this paper, we show that the greedy algorithm works for strict cg-matroids with natural weightings, and also show that the greedy algorithm works for a hereditary system on a convex geometry wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1991

ISSN: 0893-9659

DOI: 10.1016/0893-9659(91)90075-7